{ ALEXANDER CHRISTOV I don't know if code like this has been posted on this echo, but anyway here it goes. It implements three different versions of Qsort which so far if the fastest sorting algorithm known. However, it is not adequate For sorting File Records. I've tested the routines and have worked With them For quite a While, but don't trust me 8-) Murphy never sleeps 8-) } Unit SORT; {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} { Purpose : Unit that implements a generic QSort(), similar to } { the one in the standard C library. } { Author : Alexander Christov } { Notes : Very instructive on the use of Pointers in TP. } { } { Use freely. } { } {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} Interface Type CmpFunc=Function(El1,El2:Pointer):Boolean; Procedure QSort(Base:Pointer;Elements,Size:Word;GT:CmpFunc); { Base - Pointer to the first element Elements - Number of elements Size - Size of an element in Bytes. Use SizeOf() if in doubt GT - A Function of Type CmpFunc that compares the elements pointed to by the first and the second arguments and returns True if the first is greater than the second. GT = Greater Than 8-) } { Some commonly used CmpFunc } Function bGT(El1,El2:Pointer):Boolean; { Compares ^Byte } Function wGT(El1,El2:Pointer):Boolean; { Compares ^Word } Function lGT(El1,El2:Pointer):Boolean; { Compares ^LongInt } Function rGT(El1,El2:Pointer):Boolean; { Compares ^Real } Implementation {$F+} Type Dummy=Array[0..0] of Byte; pDummy=^Dummy; { Recursive Implementation } Procedure _Sort(Base:Pointer;L,R,Size:Word;GT:CmpFunc); Var I,J:Integer; Var X:Pointer; Procedure SwapElements(El1,El2:Word); Var Tmp:Pointer; begin GetMem(Tmp,Size); Move(pDummy(Base)^[El1*Size],Tmp^,Size); Move(pDummy(Base)^[El2*Size],pDummy(Base)^[El1*Size],Size); Move(Tmp^,pDummy(Base)^[El2*Size],Size); FreeMem(Tmp,Size); end; begin I:=L; J:=R; GetMem(X,Size); Move(pDummy(Base)^[((L+R) div 2)*Size],X^,Size); Repeat While GT(X,@pDummy(Base)^[I*Size]) do INC(I); While GT(@pDummy(Base)^[J*Size],X) do DEC(J); if I<=J then begin if I<>J then SwapElements(I,J); INC(I); DEC(J); end; Until I>J; FreeMem(X,Size); if LpByte(El2)^); end; Function wGT(El1,El2:Pointer):Boolean; Type pWord=^Word; begin wGt:=(pWord(El1)^>pWord(El2)^); end; Function lGT(El1,El2:Pointer):Boolean; Type pLongInt=^LongInt; begin lGt:=(pLongInt(El1)^>pLongInt(El2)^); end; Function rGT(El1,El2:Pointer):Boolean; Type pReal=^Real; begin rGt:=(pReal(El1)^>pReal(El2)^); end; end. {$A-,B-,D+,E-,F+,G+,I-,L+,N-,O+,P+,Q-,R-,S-,T-,V-,X+,Y+} { I don't know which settings are Really necessary For this Unit, but since I always work With the above, I'm including them to make sure the Unit compiles in your computer. The only critical ones (I Think) are R- and F+ } Unit SORT; {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} { Purpose: Unit that implements a generic QSort, similar to the } { one in the standard C library, but a lot more general } { This new version allows ordering of almost anything, } { even structures whose elements are not contiguous in memory } { or have strange mutual dependancies that don't allow "happy } { swapping". Obviously, this version is slower than the } { previous one. if you won't be sorting Linked Lists or } { Collections, use the previous one. } { Author : Alexander Christov } { Notes : Very instructive on the use of Pointers in TP. } { This version does not limit the number of elements to } { 65535 since the need not be contiguous. } { } { Use freely. } { } {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} Interface Type CmpFunc=Function(El1,El2:Pointer):Boolean; AddrFunc=Function(Base:Pointer;Size,N:LongInt):Pointer; SwapProc=Procedure(El1,El2:Pointer;Size:LongInt); Procedure QSort(Base:Pointer; { Pointer to the first element. if the user Writes his own GT, Addr and Swap, this isn't Really necessary. } Elements:LongInt; { Total number of elements } Size:Word; { Size of an element in Bytes } GT:CmpFunc; { Comparing Function } Addr:AddrFunc; { Addressing Function } Swap:SwapProc); { Swapping Function } { GT - A funcion of Type CmpFunc that compares the elements pointed to by its first and second arguments, and returns True if the first element is Greater Than the second one. This Unit defines some commonly used CmpFuncs: bGT - Compares Bytes wGT - Compares Words lGT - Compares LongInts rGT - Compares Reals Addr - A Function that receives the index of an element and must return a Pointer to it. This Unit defines the Function LinearAddr which can be used whenever the elements are located contiguously in memory. Swap - A Procedure that swaps the elements pointed by its arguments. DirectSwap is defined in the Unit, which can be used whenever the elements are mutually independent or no external processes are needed when swapping two elements } { Commonly used CmpFuncs } Function bGT(El1,El2:Pointer):Boolean; { Compares ^Byte } Function wGT(El1,El2:Pointer):Boolean; { Compares ^Word } Function lGT(El1,El2:Pointer):Boolean; { Compares ^LongInt } Function rGT(El1,El2:Pointer):Boolean; { Compares ^Real } Function LinearAddr(Base:Pointer;Size,N:LongInt):Pointer; Procedure DirectSwap(El1,El2:Pointer;Size:LongInt); Implementation {$F+} Type Dummy=Array[0..0] of Byte; pDummy=^Dummy; Var X,Middle:Pointer; Procedure _Sort(Base:Pointer;L,R:LongInt;Size:Word;GT:CmpFunc;Addr:AddrFunc;Swap:SwapProc ); Var I,J:LongInt; begin I:=L; J:=R; Move(Addr(Base,Size,(L+R) div 2)^,Middle^,Size); Repeat While GT(Middle,Addr(Base,Size,I)) do INC(I); While GT(Addr(Base,Size,J),Middle) do DEC(J); if I<=J then begin if I<>J then Swap(Addr(Base,Size,I),Addr(Base,Size,J),Size); INC(I); DEC(J); end; Until I>J; if LpByte(El2)^); end; Function wGT(El1,El2:Pointer):Boolean; Type pWord=^Word; begin wGt:=(pWord(El1)^>pWord(El2)^); end; Function lGT(El1,El2:Pointer):Boolean; Type pLongInt=^LongInt; begin lGt:=(pLongInt(El1)^>pLongInt(El2)^); end; Function rGT(El1,El2:Pointer):Boolean; Type pReal=^Real; begin rGt:=(pReal(El1)^>pReal(El2)^); end; { Linear Addressing } Function LinearAddr; begin LinearAddr:=@pdummy(Base)^[N*Size]; end; { Direct swapping of elements. With the use of Addr() it is quite more legible 8-) } Procedure DirectSwap; Var Tmp:Pointer; begin GetMem(Tmp,Size); Move(El1^,Tmp^,Size); Move(El2^,El1^,Size); Move(Tmp^,El2^,Size); FreeMem(Tmp,Size); end; end. { And finally a specific version of QSort() written in Assembler. It is non recursive and sorts Arrays of Words of up to 16383 elements (since it Uses the addresses of the elements rather than their indexes, and since SizeOf(Word)=2 -> 16384*2=32768 "=" -32768, and the routine Uses signed comparisons between adresses. On my 386/33 it sorts 10 times an Array of 10000 Words in 3.6 sec, While the first QSort() does the same in 46 sec. Must be called With Qsort(Pointer to the first element, 0, elements-1) Use freely. if you include the source directly in your Program, credit must be given. } Procedure QSort(Base:Pointer;L,R:Word);Assembler; Var TmpL,TmpR,TmpDI:Word; Asm xor AX,AX PUSH AX PUSH AX { 0 0 will act as a flag on the stack indicating that no more } PUSH R { (L,R) pairs need to be sorted } PUSH L @MainLoop: LES DI,Base MOV TmpDI,DI xor SI,SI MOV BX,DI POP AX { AX<-L } MOV TmpL,AX MOV SI,AX SHL AX,1 ADD DI,AX POP AX { AX<-R } MOV TmpR,AX and AX,AX { R can be never 0 except if this is the (0,0) flag } JZ @end ADD SI,AX SHL AX,1 ADD BX,AX and SI,$FFFE ADD SI,TmpDI { ES:DI -> Element[I] (L) ES:BX -> Element[J] (R) ES:SI -> Element[(L+R) div 2] } MOV AX,ES:[SI] @Loop1: MOV CX,ES:[DI] CMP AX,CX JNA @Loop2 ADD DI,2 JMP @Loop1 @Loop2: MOV CX,ES:[BX] CMP CX,AX JNA @Check SUB BX,2 JMP @Loop2 @Check: CMP DI,BX JG @Cont1 MOV CX,ES:[DI] MOV DX,ES:[BX] MOV ES:[DI],DX MOV ES:[BX],CX ADD DI,2 SUB BX,2 CMP DI,BX JNG @Loop1 @Cont1: SUB DI,TmpDI SAR DI,1 { DI - I } SUB BX,TmpDI SAR BX,1 { BX - J } CMP DI,TmpR JGE @Cont2 PUSH TmpR { I