{ > Can you show me any version of thew quick sort that you may have? I've > never seen it and never used it before. I always used an insertion sort > For anything that I was doing. Here is one (long) non-recursive version, quite fast. } Type _Compare = Function(Var A, B) : Boolean;{ QuickSort Calls This } { --------------------------------------------------------------- } { QuickSort Algorithm by C.A.R. Hoare. Non-Recursive adaptation } { from "ALGORITHMS + DATA STRUCTURES = ProgramS" by Niklaus Wirth } { Prentice-Hall, 1976. Generalized For unTyped arguments. } { --------------------------------------------------------------- } Procedure QuickSort(V : Pointer; { To Array of Records } Cnt : Word; { Record Count } Len : Word; { Record Length } ALessB : _Compare); { Compare Function } Type SortRec = Record Lt, Rt : Integer end; SortStak = Array [0..1] of SortRec; Var StkT, StkM, Ki, Kj, M : Word; Rt, Lt, I, J : Integer; Ps : ^SortStak; Pw, Px : Pointer; Procedure Push(Left, Right : Integer); begin Ps^[StkT].Lt := Left; Ps^[StkT].Rt := Right; Inc(StkT); end; Procedure Pop(Var Left, Right : Integer); begin Dec(StkT); Left := Ps^[StkT].Lt; Right := Ps^[StkT].Rt; end; begin {QSort} if (Cnt > 1) and (V <> Nil) Then begin StkT := Cnt - 1; { Record Count - 1 } Lt := 1; { Safety Valve } { We need a stack of Log2(n-1) entries plus 1 spare For safety } Repeat StkT := StkT SHR 1; Inc(Lt); Until StkT = 0; { 1+Log2(n-1) } StkM := Lt * SizeOf(SortRec) + Len + Len; { Stack Size + 2 Records } GetMem(Ps, StkM); { Allocate Memory } if Ps = Nil Then RunError(215); { Catastrophic Error } Pw := @Ps^[Lt]; { Swap Area Pointer } Px := Ptr(Seg(Pw^), Ofs(Pw^) + Len); { Hold Area Pointer } Lt := 0; Rt := Cnt - 1; { Initial Partition } Push(Lt, Rt); { Push Entire Table } While StkT > 0 Do begin { QuickSort Main Loop } Pop(Lt, Rt); { Get Next Partition } Repeat I := Lt; J := Rt; { Set Work Pointers } { Save Record at Partition Mid-Point in Hold Area } M := (LongInt(Lt) + Rt) div 2; Move(Ptr(Seg(V^), Ofs(V^) + M * Len)^, Px^, Len); { Get Useful Offsets to speed loops } Ki := I * Len + Ofs(V^); Kj := J * Len + Ofs(V^); Repeat { Find Left-Most Entry >= Mid-Point Entry } While ALessB(Ptr(Seg(V^), Ki)^, Px^) Do begin Inc(Ki, Len); Inc(I) end; { Find Right-Most Entry <= Mid-Point Entry } While ALessB(Px^, Ptr(Seg(V^), Kj)^) Do begin Dec(Kj, Len); Dec(J) end; { if I > J, the partition has been exhausted } if I <= J Then begin if I < J Then { we have two Records to exchange } begin Move(Ptr(Seg(V^), Ki)^, Pw^, Len); Move(Ptr(Seg(V^), Kj)^, Ptr(Seg(V^), Ki)^, Len); Move(Pw^, Ptr(Seg(V^), Kj)^, Len); end; Inc(I); Dec(J); Inc(Ki, Len); Dec(Kj, Len); end; { if I <= J } Until I > J; { Until All Swaps Done } { We now have two partitions. At left are all Records } { < X, and at right are all Records > X. The larger } { partition is stacked and we re-partition the residue } { Until time to pop a deferred partition. } if (J - Lt) < (Rt - I) Then { Right-Most Partition is Larger } begin if I < Rt Then Push(I, Rt); { Stack Right Side } Rt := J; { Resume With Left } end else { Left-Most Partition is Larger } begin if Lt < J Then Push(Lt, J); { Stack Left Side } Lt := I; { Resume With Right } end; Until Lt >= Rt; { QuickSort is now Complete } end; FreeMem(Ps, StkM); { Free Stack and Work Areas } end; end; {QSort} { --------------------------- CUT ----------------------------} { ALEXANDER CHRISTOV I don't know if code like this has been posted on this echo, but anyway here it goes. It implements three different versions of Qsort which so far if the fastest sorting algorithm known. However, it is not adequate For sorting File Records. I've tested the routines and have worked With them For quite a While, but don't trust me 8-) Murphy never sleeps 8-) } Unit SORT; {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} { Purpose : Unit that implements a generic QSort(), similar to } { the one in the standard C library. } { Author : Alexander Christov } { Notes : Very instructive on the use of Pointers in TP. } { } { Use freely. } { } {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} Interface Type CmpFunc=Function(El1,El2:Pointer):Boolean; Procedure QSort(Base:Pointer;Elements,Size:Word;GT:CmpFunc); { Base - Pointer to the first element Elements - Number of elements Size - Size of an element in Bytes. Use SizeOf() if in doubt GT - A Function of Type CmpFunc that compares the elements pointed to by the first and the second arguments and returns True if the first is greater than the second. GT = Greater Than 8-) } { Some commonly used CmpFunc } Function bGT(El1,El2:Pointer):Boolean; { Compares ^Byte } Function wGT(El1,El2:Pointer):Boolean; { Compares ^Word } Function lGT(El1,El2:Pointer):Boolean; { Compares ^LongInt } Function rGT(El1,El2:Pointer):Boolean; { Compares ^Real } Implementation {$F+} Type Dummy=Array[0..0] of Byte; pDummy=^Dummy; { Recursive Implementation } Procedure _Sort(Base:Pointer;L,R,Size:Word;GT:CmpFunc); Var I,J:Integer; Var X:Pointer; Procedure SwapElements(El1,El2:Word); Var Tmp:Pointer; begin GetMem(Tmp,Size); Move(pDummy(Base)^[El1*Size],Tmp^,Size); Move(pDummy(Base)^[El2*Size],pDummy(Base)^[El1*Size],Size); Move(Tmp^,pDummy(Base)^[El2*Size],Size); FreeMem(Tmp,Size); end; begin I:=L; J:=R; GetMem(X,Size); Move(pDummy(Base)^[((L+R) div 2)*Size],X^,Size); Repeat While GT(X,@pDummy(Base)^[I*Size]) do INC(I); While GT(@pDummy(Base)^[J*Size],X) do DEC(J); if I<=J then begin if I<>J then SwapElements(I,J); INC(I); DEC(J); end; Until I>J; FreeMem(X,Size); if LpByte(El2)^); end; Function wGT(El1,El2:Pointer):Boolean; Type pWord=^Word; begin wGt:=(pWord(El1)^>pWord(El2)^); end; Function lGT(El1,El2:Pointer):Boolean; Type pLongInt=^LongInt; begin lGt:=(pLongInt(El1)^>pLongInt(El2)^); end; Function rGT(El1,El2:Pointer):Boolean; Type pReal=^Real; begin rGt:=(pReal(El1)^>pReal(El2)^); end; end. {$A-,B-,D+,E-,F+,G+,I-,L+,N-,O+,P+,Q-,R-,S-,T-,V-,X+,Y+} { I don't know which settings are Really necessary For this Unit, but since I always work With the above, I'm including them to make sure the Unit compiles in your computer. The only critical ones (I Think) are R- and F+ } Unit SORT; {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} { Purpose: Unit that implements a generic QSort, similar to the } { one in the standard C library, but a lot more general } { This new version allows ordering of almost anything, } { even structures whose elements are not contiguous in memory } { or have strange mutual dependancies that don't allow "happy } { swapping". Obviously, this version is slower than the } { previous one. if you won't be sorting Linked Lists or } { Collections, use the previous one. } { Author : Alexander Christov } { Notes : Very instructive on the use of Pointers in TP. } { This version does not limit the number of elements to } { 65535 since the need not be contiguous. } { } { Use freely. } { } {ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ} Interface Type CmpFunc=Function(El1,El2:Pointer):Boolean; AddrFunc=Function(Base:Pointer;Size,N:LongInt):Pointer; SwapProc=Procedure(El1,El2:Pointer;Size:LongInt); Procedure QSort(Base:Pointer; { Pointer to the first element. if the user Writes his own GT, Addr and Swap, this isn't Really necessary. } Elements:LongInt; { Total number of elements } Size:Word; { Size of an element in Bytes } GT:CmpFunc; { Comparing Function } Addr:AddrFunc; { Addressing Function } Swap:SwapProc); { Swapping Function } { GT - A funcion of Type CmpFunc that compares the elements pointed to by its first and second arguments, and returns True if the first element is Greater Than the second one. This Unit defines some commonly used CmpFuncs: bGT - Compares Bytes wGT - Compares Words lGT - Compares LongInts rGT - Compares Reals Addr - A Function that receives the index of an element and must return a Pointer to it. This Unit defines the Function LinearAddr which can be used whenever the elements are located contiguously in memory. Swap - A Procedure that swaps the elements pointed by its arguments. DirectSwap is defined in the Unit, which can be used whenever the elements are mutually independent or no external processes are needed when swapping two elements } { Commonly used CmpFuncs } Function bGT(El1,El2:Pointer):Boolean; { Compares ^Byte } Function wGT(El1,El2:Pointer):Boolean; { Compares ^Word } Function lGT(El1,El2:Pointer):Boolean; { Compares ^LongInt } Function rGT(El1,El2:Pointer):Boolean; { Compares ^Real } Function LinearAddr(Base:Pointer;Size,N:LongInt):Pointer; Procedure DirectSwap(El1,El2:Pointer;Size:LongInt); Implementation {$F+} Type Dummy=Array[0..0] of Byte; pDummy=^Dummy; Var X,Middle:Pointer; Procedure _Sort(Base:Pointer;L,R:LongInt;Size:Word;GT:CmpFunc;Addr:AddrFunc;Swap:SwapProc ); Var I,J:LongInt; begin I:=L; J:=R; Move(Addr(Base,Size,(L+R) div 2)^,Middle^,Size); Repeat While GT(Middle,Addr(Base,Size,I)) do INC(I); While GT(Addr(Base,Size,J),Middle) do DEC(J); if I<=J then begin if I<>J then Swap(Addr(Base,Size,I),Addr(Base,Size,J),Size); INC(I); DEC(J); end; Until I>J; if LpByte(El2)^); end; Function wGT(El1,El2:Pointer):Boolean; Type pWord=^Word; begin wGt:=(pWord(El1)^>pWord(El2)^); end; Function lGT(El1,El2:Pointer):Boolean; Type pLongInt=^LongInt; begin lGt:=(pLongInt(El1)^>pLongInt(El2)^); end; Function rGT(El1,El2:Pointer):Boolean; Type pReal=^Real; begin rGt:=(pReal(El1)^>pReal(El2)^); end; { Linear Addressing } Function LinearAddr; begin LinearAddr:=@pdummy(Base)^[N*Size]; end; { Direct swapping of elements. With the use of Addr() it is quite more legible 8-) } Procedure DirectSwap; Var Tmp:Pointer; begin GetMem(Tmp,Size); Move(El1^,Tmp^,Size); Move(El2^,El1^,Size); Move(Tmp^,El2^,Size); FreeMem(Tmp,Size); end; end. { And finally a specific version of QSort() written in Assembler. It is non recursive and sorts Arrays of Words of up to 16383 elements (since it Uses the addresses of the elements rather than their indexes, and since SizeOf(Word)=2 -> 16384*2=32768 "=" -32768, and the routine Uses signed comparisons between adresses. On my 386/33 it sorts 10 times an Array of 10000 Words in 3.6 sec, While the first QSort() does the same in 46 sec. Must be called With Qsort(Pointer to the first element, 0, elements-1) Use freely. if you include the source directly in your Program, credit must be given. } Procedure QSort(Base:Pointer;L,R:Word);Assembler; Var TmpL,TmpR,TmpDI:Word; Asm xor AX,AX PUSH AX PUSH AX { 0 0 will act as a flag on the stack indicating that no more } PUSH R { (L,R) pairs need to be sorted } PUSH L @MainLoop: LES DI,Base MOV TmpDI,DI xor SI,SI MOV BX,DI POP AX { AX<-L } MOV TmpL,AX MOV SI,AX SHL AX,1 ADD DI,AX POP AX { AX<-R } MOV TmpR,AX and AX,AX { R can be never 0 except if this is the (0,0) flag } JZ @end ADD SI,AX SHL AX,1 ADD BX,AX and SI,$FFFE ADD SI,TmpDI { ES:DI -> Element[I] (L) ES:BX -> Element[J] (R) ES:SI -> Element[(L+R) div 2] } MOV AX,ES:[SI] @Loop1: MOV CX,ES:[DI] CMP AX,CX JNA @Loop2 ADD DI,2 JMP @Loop1 @Loop2: MOV CX,ES:[BX] CMP CX,AX JNA @Check SUB BX,2 JMP @Loop2 @Check: CMP DI,BX JG @Cont1 MOV CX,ES:[DI] MOV DX,ES:[BX] MOV ES:[DI],DX MOV ES:[BX],CX ADD DI,2 SUB BX,2 CMP DI,BX JNG @Loop1 @Cont1: SUB DI,TmpDI SAR DI,1 { DI - I } SUB BX,TmpDI SAR BX,1 { BX - J } CMP DI,TmpR JGE @Cont2 PUSH TmpR { Ii0 then Swap(i0^,m0^,ElementGroesse); inc(i,i0) end; (* WHILE i *) EXIT: end; (* E_Sort *) procedure Sort(von, bis : word); (* Rekursive Quicksort *) label EXIT; var i, j : word; begin if bis-von<6 then begin E_Sort(von,bis); goto EXIT end; i:=von; j:=bis; m0:=Element((i+j) SHR 1); move(m0^,Mitte^,ElementGroesse); i0:=Element(i); j0:=Element(j); while i<=j do begin while SortKleiner(i0^,Mitte^) do inc(i,i0); while SortKleiner(Mitte^,j0^) do dec(j,j0); if i<=j then begin if i<>j then Swap(i0^,j0^,ElementGroesse); inc(i,i0); dec(j,j0) end (* if i<=j *) end; (* while i<=j *) if bis-i 0) then Fswap(Sender,pivotP,rightP); end; exit; end; rightP := (nElem -1) + pivotP; leftP := (nElem shr 1) + pivotP; { sort pivot, left, and right elements for "median of 3" } FCompare(Sender,leftP,rightP,retval); if (retval > 0) then Fswap(Sender,leftP, rightP); FCompare(Sender,leftP,pivotP,retval); if (retval > 0) then Fswap(Sender,leftP, pivotP) else begin FCompare(Sender,pivotP,rightP,retval); if retval > 0 then Fswap(Sender,pivotP, rightP); end; if (nElem = 3) then begin Fswap(Sender,pivotP, leftP); exit; end; { now for the classic Horae algorithm } pivotEnd := pivotP + 1; leftP := pivotEnd; repeat FCompare(Sender,leftP, pivotP,retval); while (retval <= 0) do begin if (retval = 0) then begin Fswap(Sender,leftP, pivotEnd); Inc(pivotEnd); end; if (leftP < rightP) then Inc(leftP) else goto qBreak; FCompare(Sender,leftP, pivotP,retval); end; {while} while (leftP < rightP) do begin FCompare(Sender,pivotP, rightP,retval); if (retval < 0) then Dec(rightP) else begin FSwap(Sender,leftP, rightP); if (retval <> 0) then begin Inc(leftP); Dec(rightP); end; break; end; end; {while} until (leftP >= rightP); qBreak: FCompare(Sender,leftP,pivotP,retval); if (retval <= 0) then Inc(leftP); leftTemp := leftP -1; pivotTemp := pivotP; while ((pivotTemp < pivotEnd) and (leftTemp >= pivotEnd)) do begin Fswap(Sender,pivotTemp, leftTemp); Inc(pivotTemp); Dec(leftTemp); end; {while} lNum := (leftP - pivotEnd); nElem := ((nElem + pivotP) -leftP); if (nElem < lNum) then begin qSortHelp(leftP, nElem); nElem := lNum; end else begin qSortHelp(pivotP, lNum); pivotP := leftP; end; goto TailRecursion; end; {qSortHelp } begin if Assigned(FCompare) and Assigned(FSwap) then begin if (uNElem < 2) then exit; { nothing to sort } qSortHelp(1, uNElem); end; end; { QSort } end. { demo } unit Unit1; interface uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs, Grids, Qsort, StdCtrls; type TForm1 = class(TForm) QSort1: TQSort; StringGrid1: TStringGrid; Button1: TButton; procedure FormCreate(Sender: TObject); procedure QSort1Compare(Sender: TObject; e1, e2: Word; var Action: Integer); procedure QSort1Swap(Sender: TObject; e1, e2: Word); procedure Button1Click(Sender: TObject); end; var Form1: TForm1; implementation {$R *.DFM} procedure TForm1.FormCreate(Sender: TObject); begin with StringGrid1 do begin Cells[1,1] := 'the'; Cells[1,2] := 'brown'; Cells[1,3] := 'dog'; Cells[1,4] := 'bit'; Cells[1,5] := 'me'; end; end; procedure TForm1.QSort1Compare(Sender: TObject; e1, e2: Word; var Action: Integer); begin with Sender as TStringGrid do begin if (Cells[1, e1] < Cells[1, e2]) then Action := -1 else if (Cells[1, e1] > Cells[1, e2]) then Action := 1 else Action := 0; end; {with} end; procedure TForm1.QSort1Swap(Sender: TObject; e1, e2: Word); var s: string[63]; { must be large enough to contain the longest string in the grid } i: integer; begin with Sender as TStringGrid do for i := 0 to ColCount -1 do begin s := Cells[i, e1]; Cells[i, e1] := Cells[i, e2]; Cells[i, e2] := s; end; {for} end; procedure TForm1.Button1Click(Sender: TObject); begin QSort1.DoQSort(StringGrid1,STringGrid1.RowCount-1); end; end. { --------------------------- CUT ----------------------------} { > Could someone please post some code on using a quick > sort to sort an array of strings? I can do even better than that. I can give you some code on a general qsort routine that works like in C (if you're familiar with that). I. e. you can sort any type of arrays, if only you supply the correct compare function. Here goes... } unit QSort; {********************************************************* * QSORT.PAS * * C-like QuickSort implementation * * Written 931118 by Bj”rn Felten @ 2:203/208 * * After an idea by Pontus Rydin * *********************************************************} interface type CompFunc = function(Item1, Item2 : word) : integer; procedure QuickSort( var Data; {An array. Must be [0..Count-1] and not [1..Count] or anything else! } Count, {Number of elements in the array} Size : word; {Size in bytes of a single element -- e.g. 2 for integers or words, 4 for longints, 256 for strings and so on } Compare : CompFunc); {The function that decides which element is "greater" or "less". Must return an integer that's < 0 if the first element is less, 0 if they're equal and > 0 if the first element is greater. A simple Compare for words can look like this: function WordCompare(Item1, Item2: word): integer; begin WordCompare := MyArray[Item1] - MyArray[Item2] end; NB. It's not the =indices= that shall be compared, it's the elements that the supplied indices points to! Very important to remember! Also note that the array may be sorted in descending order just by means of a simple swap of Item1 and Item2 in the example.} implementation procedure QuickSort; procedure Swap(Item1, Item2 : word); var P1, P2 : ^byte; I : word; begin if Item1 <> Item2 then begin I := Size; P1 := @Data; inc(P1, Item1 * Size); P2 := @Data; inc(P2, Item2 * Size); asm mov cx,I { Size } les di,P1 push ds lds si,P2 @L: mov ah,es:[di] lodsb mov [si-1],ah stosb loop @L pop ds end end end; procedure Sort(Left, Right: integer); var i, j, x, y : integer; begin i := Left; j := Right; x := (Left+Right) div 2; repeat while compare(i, x) < 0 do inc(i); while compare(x, j) < 0 do dec(j); if i <= j then begin swap(i, j); inc(i); dec(j) end until i > j; if Left < j then Sort(Left, j); if i < Right then Sort(i, Right) end; begin Sort(0, Count) end; end. { of unit } { A simple testprogram can look like this: } program QS_Test; {Test QuickSort   la C} uses qsort; var v: array[0..9999] of word; i: word; {$F+} {Must be compiled as FAR calls!} function cmpr(a, b: word): integer; begin cmpr := v[a] - v[b] end; function cmpr2(a, b: word): integer; begin cmpr2 := v[b] - v[a] end; {$F-} begin randomize; for i := 0 to 9999 do v[i] := random(20000); quicksort(v, 10000, 2, cmpr); {in order lo to hi} quicksort(v, 10000, 2, cmpr2); {we now have a sorted list, sort it in {reverse -- nasty for qsort!} quicksort(v, 10000, 2, cmpr); {and reverse again} quicksort(v, 10000, 2, cmpr); {sort a sorted list -- also not very popular} end. { --------------------------- CUT ----------------------------} {************************************************} { } { QuickSort Demo } { Copyright (c) 1985,90 by Borland International } { und: Robert Beicht ;-) } { } {************************************************} program QSort; {$R-,S-} uses Crt; { This program demonstrates the quicksort algorithm, which } { provides an extremely efficient method of sorting arrays in } { memory. The program generates a list of 1000 random numbers } { between 0 and 29999, and then sorts them using the QUICKSORT } { procedure. Finally, the sorted list is output on the screen. } { Note that stack and range checks are turned off (through the } { compiler directive above) to optimize execution speed. } const Max = 100; type { ***** } PData = ^TData; { ***** } TData = record { ***** } NachName: String[25]; { ***** } VorName: String[25]; { ***** } {..} { ***** } end; { ***** } List = array[1..Max] of TData; var Data: List; I: Integer; function Less(var d1,d2:TData): Boolean; { ***** } begin { ***** } if d1.NachName < d2.NachName then Less := True else { ***** } if d1.NachName > d2.NachName then Less := False else { ***** } if d1.VorName < d2.VorName then Less := True else { ***** } if d1.VorName > d2.VorName then Less := False else Less := False; { ***** } end; { ***** } { QUICKSORT sorts elements in the array A with indices between } { LO and HI (both inclusive). Note that the QUICKSORT proce- } { dure provides only an "interface" to the program. The actual } { processing takes place in the SORT procedure, which executes } { itself recursively. } procedure QuickSort(var A: List; Lo, Hi: Integer); procedure Sort(l, r: Integer); var i, j, x: integer; { ***** } y: TData; { ***** } begin i := l; j := r; x := (l+r) DIV 2; repeat while Less(a[i], a[x]) do i := i + 1; { ***** } while Less(a[x], a[j]) do j := j - 1; { ***** } if i <= j then begin y := a[i]; a[i] := a[j]; a[j] := y; i := i + 1; j := j - 1; end; until i > j; if l < j then Sort(l, j); if i < r then Sort(i, r); end; begin {QuickSort}; Sort(Lo,Hi); end; begin {QSort} (*Initialisiere List*) Sort(List, 1, Count); end.